Tampilkan postingan dengan label Cancer. Tampilkan semua postingan
Tampilkan postingan dengan label Cancer. Tampilkan semua postingan

Rabu, 29 Agustus 2012

Does Calorie Restriction Extend Lifespan in Mammals?

Until about two years ago, the story went something like this: calorie restriction extends lifespan in yeast, worms, flies, and rodents. Lifespan extension by calorie restriction appears to be biologically universal, therefore it's probably only a matter of time until it's demonstrated in humans as well. More than 20 years ago, independent teams of researchers set out to demonstrate the phenomenon in macaque monkeys, a primate model closer to humans than any lifespan model previously tested.

Recent findings have caused me to seriously question this narrative. One of the first challenges was the finding that genetically wild mice (as opposed to inbred laboratory strains) do not live longer when their calorie intake is restricted, despite showing hormonal changes associated with longevity in other strains, although the restricted animals do develop less cancer (1). One of the biggest blows came in 2009, when researchers published the results of a study that analyzed the effect of calorie restriction on lifespan in 41 different strains of mice, both male and female (2). They found that calorie restriction extends lifespan in a subset of strains, but actually shortens lifespan in an even larger subset. Below is a graph of the effect of calorie restriction on lifespan in the 41 strains. Positive numbers indicate that calorie restriction extended life, while negative numbers indicate that it shortened life:

Read more »

Selasa, 19 Juli 2011

Cara Cegah Kanker Payudara

Kanker payudara merupakan jenis kanker dengan jumlah kasus terbanyak di dunia, sekaligus penyebab kematian terbesar. Sebagian besar penderita baru terdeteksi di stadium lanjut karena kanker tidak bergejala. Semakin bertambahnya usia, makin besar pula risiko seorang perempuan terkena kanker. Hal ini tentu membuat kita khawatir. Meski begitu, kita bisa mengubah ketakutan menjadi sebuah tindakan nyata untuk mencegah penyakit yang jadi momok kaum wanita ini.

Aktif bergerak : Tidak ada kata tua untuk mulai berolahraga. Penelitian menyebutkan, olahraga akan menurunkan kadar hormon estrogen, yang berkaitan dengan kanker. Lakukan olahraga minimal 30 menit sehari. 

Kurangi berat badan : Setelah menopause, perempuan yang obesitas punya risiko lebih besar terkena kanker payudara dibanding rekannya yang punya berat badan normal. Meski begitu, kenaikan bobot tubuh pada wanita yang tadinya beratnya ideal juga mendatangkan risiko yang sama.

Cukupi kebutuhan vitamin D : Studi yang menegaskan manfaat vitamin D sebagai anti-kanker terus bermunculan. Yang terakhir menyebutkan, 94 persen pasien kanker payudara yang kekurangan vitamin D, kankernya lebih cepat menyebar dibanding mereka yang cukup vitamin D.

Batasi alkohol : Data terbaru dari National Cancer Institute menunjukkan perempuan yang minum satu atau dua gelas alkohol setiap hari memiliki risiko terkena kanker payudara 32 persen lebih besar. Para ahli menyarankan untuk membatasi alkohol tidak lebih dari satu gelas per hari.

Perhatikan gejalanya : Gejala awal kanker payudara dapat berupa benjolan yang biasanya dirasakan berbeda dari jaringan payudara di sekitarnya, tidak menimbulkan nyeri, dan biasanya memiliki pinggiran tidak teratur. Tanda lain yang mungkin timbul adalah benjolandi ketiak, perubahan ukuran atau bentuk payudara, keluar cairan yang abnormal dari puting susu, dan perubahan warna atau tekstur kulit payudara.

Lakukan deteksi dini : Skrining dan deteksi dini sebetulnya dapat secara signifikan menurunkan stadium pada temuan kasus kanker payudara. Selain mamografi, pemeriksaan payudara sendiri (Sadari) yang dapat diajarkan, kemudian dipraktikkan sendiri oleh perempuan, jika dilakukan secara teratur bisa mendeteksi tumor 1,2 sentimeter.

Kamis, 26 Mei 2011

Cancer Diet: Feasting on the Four Food Groups - A Mesothelioma Patient's Guide to Nutrition

At some point during our childhood we have all been told to eat our vegetables. Forcing down tasteless green beans and Brussels sprouts were supposed to make us taller and stronger. Well, so it is for mesothelioma patients. Diet is often an overlooked subject for cancer patients, but eating the right nutritional foods for strength and energy is just as important as taking the proper medication.

Mesothelioma patients undergoing treatment must follow a special cancer diet devised by their nutritionists. Cancer diets involve eating the correct amounts of protein and calories as well as drinking the right amount of water to keep the ailing body replenished and energized. The body needs plenty of nourishment when it is going through chemotherapy or even when the patient is taking certain medications.

Doctors and nutritionists may also recommend a special cancer diet because many mesothelioma patients tend to lose their appetites due to worry over their condition. Also, those who are undergoing treatment may choose not to eat because of the unpleasant side effects they may experience. Chemotherapy, for example, and even some particular medications may cause an imbalance of nutrients that must be corrected in order to keep the body as strong as possible and to keep the patient from losing an excessive amount of weight. Other side effects of mesothelioma treatment include nausea, vomiting, dry mouth, a change in the sense of smell or taste, and/or constipation.

Below are some of the important nutrients patients are encouraged to include in their mesothelioma diet:

Protein is important for any cancer patient because it helps repair tissue damaged by surgery, chemotherapy, or radiation. Protein also helps maintain a strong and healthy immune system, lowering a mesothelioma patient’s risk of infection after aggressive cancer treatments. The National Cancer Institute recommends increasing protein in a cancer diet with cheese, milk, ice cream, yoghurt, eggs, nuts, peanut butter, meats and fish.

Fats are an essential part of the cancer diet because they supply the body with the necessary energy it needs while undergoing treatment. The amount of fats (meaning the number of calories) a cancer diet should consist of is dependent on a mesothelioma patient’s age and body size. The National Cancer Institute recommends increasing caloric intake with such foods as butter, milk, cheese, honey, sugar, granola and dried fruits.

Water is another essential element of the cancer diet. Without a substantial amount of water, the body will dehydrate. It is important that anyone undergoing cancer treatment receive enough water to keep their bodies hydrated and replenished.

The details of every patient’s mesothelioma diet will vary. Some patients will need to incorporate more fat into their diets, while others may need more protein. It is important that patients devise a cancer diet under the guidance of their doctor and nutritionist to ensure that they receive the proper amount of nutrients to improve their quality of life.

Minggu, 22 Mei 2011

Cancer Treatment

There are six main types of treatment for cancer and these are described below. It is fairly common for a combination of treatments to be used.

a. Active surveillance (or watchful waiting)
Some types of cancer grow very slowly and may cause no problems for many years. In this situation you may not need to have any treatment for some time, but your doctor will monitor you closely so that if the cancer does start to grow you can be given treatment at that time.

b. Surgery
An operation is done to remove the tumour. Surgery is often used if the cancer is only in one area of the body and has not spread. It may be used to remove lymph nodes if these are also affected by the cancer. It can sometimes be used to remove a cancer that has spread to another area of the body, but this is less common. The type of operation will depend on the area of the body affected by the cancer, and on the size and position of the tumour.

c. Radiotherapy
This is the use of high energy x-rays to destroy cancer cells, but cause as little harm as possible to normal cells. The radiotherapy is aimed at the affected area of the body and is very carefully planned. It can cause side effects and the most common is tiredness. The side effects will depend on the part of the body that is being treated.

d. Chemotherapy
Chemotherapy is the use of anti-cancer (cytotoxic) drugs to destroy cancer cells. There are more than 50 different chemotherapy drugs. Some are given as tablets or capsules but most are given by drip (infusion) into a vein. The drugs go into the bloodstream and travel throughout the body to treat the cancer cells wherever they are. Sometimes just one chemotherapy drug is used, but often a combination of two, three or more drugs is given.

Chemotherapy can cause side effects. The side effects will depend on which drug (or combination of drugs) is used. There are now very good ways of preventing or reducing the side effects of chemotherapy.

e. Hormonal therapy
Hormonal therapies work by altering the levels of particular hormones in the body. Some cancers depend on certain hormones in order to divide and grow. By altering the level of hormones in the body, or blocking the hormones from attaching to the cancer cells the cancer can be controlled.

f. Biological therapy
Biological therapies use substances that occur naturally in the body to destroy cancer cells. There are several types of biological therapy, including: monoclonal antibodies, cancer growth inhibitors, vaccines and gene therapy.

Monoclonal antibodies are drugs that can 'recognise' and find specific cells in the body. They can be designed to find a particular type of cancer cell, attach itself to them and destroy them. They can also carry a radioactive molecule, which then delivers radiation directly to the cancer cells.

Cancer growth inhibitors interfere with the way cancer cells use 'chemical messengers' to help the cell to develop and divide. Research is trying to see whether vaccines and gene therapy can be given to treat a cancer that has come back or has spread. Vaccines may also be able to reduce the chance of a cancer coming back, but this type of research is in the very early stages.

Sign And Phenomenon Of Cancer

Cancer can often be managed more easily when it is diagnosed in the early stages. Being aware of your body and what is 'normal' for you, and reporting symptoms to your GP, can help to make sure that, if you do have cancer, it is diagnosed as early as possible.

There are some common signs and symptoms that may alert you to the fact that something is new or different. You should contact your doctor if you have any of the following:

1. Lumps

Knowing how your body normally looks and feels can help you spot any early changes that could be caused by cancer. You should see your GP if you notice a lump anywhere in your body. It can be useful to tell them how long it’s been there and whether it is getting bigger, or causes discomfort. Cancerous lumps are often (but not always) painless.

It can be difficult to tell what a lump is just by feeling it, but if your GP suspects that you might have a cancer they will refer you to the appropriate specialist for further tests.

2. Coughing, breathlessness and hoarseness

There are many medical conditions that can cause 'chesty' symptoms like coughing and breathlessness (for example, infections and inflammations), but in some cases these symptoms may be a sign of lung cancer. If you have a cough or feel breathless for more than two weeks you should see your GP. You should also tell your GP if you have any blood in your sputum (phlegm) when you cough.

Laryngitis (inflammation of the larynx) is common and can cause a hoarse voice. In a small number of people, a hoarse voice may be a sign of cancer of the larynx (voice box). If hoarseness continues for longer than two weeks, you should tell your GP.

3. Changes in bowel habit

Symptoms of bowel cancer may include blood in your stools (bowel motion). The blood would usually be dark but can be bright red in colour. Fresh, bright red blood is usually a sign of piles (haemorrhoids).

You may notice a change in your normal bowel pattern (such as diarrhoea or constipation) for no obvious reason. You might have a feeling of not having emptied your bowel properly after a bowel motion. Some people also notice that they have pain in the abdomen or back passage.

Remember that altered bowel habits aren't always caused by cancer, but can be caused by changes n diet, some medicines, anxiety, and other medical conditions.

4. Bleeding

Any unexplained bleeding is a sign that there is something wrong and should always be checked out by your GP.

As previously mentioned, bleeding from the back passage is most commonly caused by piles, but can sometimes be due to cancer of the bowel or rectum.

Cancer of the womb or cervix can cause women to bleed between periods or after sex. Women who have any vaginal bleeding after they have had their menopause should see their GP. If necessary your GP will refer you to a gynaecologist.

Blood in your urine may be caused by bladder or kidney cancer. It can also be caused by infection. If you notice blood in your urine it is important to see your GP for a check-up. (It may be helpful to know that the colouring in some medicines or food can cause urine to look pink, as can natural foods, such as beetroot.)

Coughing up blood in your sputum may be caused by serious chest infections, but can sometimes be a sign of lung cancer.

Vomiting blood can be a sign of stomach cancer, although it can also be due to a stomach ulcer. Therefore, it is important to have this checked out by your GP.

Bruising and nosebleeds are rarely signs of cancer, but can in some cases be caused by leukaemia. However, people with leukaemia often have other troublesome symptoms too.

5. Moles

Malignant melanoma is a type of skin cancer that often starts with a change in the appearance of normal skin. This can look like an abnormal new mole. Less than a third of melanomas develop in existing moles. It can be difficult to tell the difference between a mole and a melanoma, but any of the following changes should be checked out:

Asymmetry Moles are usually regular and symmetrical in shape. Melanomas are likely to be irregular or asymmetrical.

Border Moles usually have a well-defined regular border. Melanomas are more likely to have an irregular border with jagged edges.

Colour Moles tend to be a single brown. Melanomas often have more than one colour. They may be varying shades of brown mixed with black, red, pink, white or a bluish tint.

Size Moles are normally no bigger than the blunt end of a pencil (about 6mm (½ inch) across). Melanomas are usually more than 7mm (½ inch) in diameter.

Itching, crusting or bleeding may also occur in melanomas – these are less common signs but should not be ignored.

6. Unexplained weight loss

If you have lost a lot of weight over a short period of time (a couple of months), that cannot be explained by changes in your diet, increased exercise or stress, it is important to tell your GP. Other symptoms, such as sickness, pain and fatigue also tend to occur when a person experiences weight loss due to cancer.

If your GP suspects that you may have cancer, an urgent referral will be made to a specialist. There are guidelines produced by the National Institute for Health and Clinical Excellence (NICE) to help GPs identify when symptoms could be due to cancer or some other condition. An urgent referral usually means that the specialist will see you within two weeks. The specialist can carry out other investigations, such as a biopsy or various scans, to find the cause of your symptoms and plan any treatment necessary.

If your GP thinks your symptoms are not caused by cancer they may still refer you to a specialist for advice, but the referral is likely to be non-urgent and it will take longer for you to be seen.

Remember – in most cases, your symptoms will turn out to be caused by something other than cancer, but they can still be signs of illness and so you won't be wasting your doctor's time by getting them checked out.

Sabtu, 21 Mei 2011

Cancer Type

There is a four type of cancer who can i explain :

1. Sarcomas

Sarcomas are very rare. They are a group of cancers that form in the connective or supportive tissues of the body such as muscle, bone and fatty tissue. They account for less than 1% (1 in 100) of cancers.

Sarcomas are split into two main types:

a. bone sarcomas - that are found in the bones

b. soft tissue sarcomas - that develop in the other supportive tissues of the body.

2. Carcinomas

The majority of cancers, about 85% (85 in a 100), are carcinomas. They start in the epithelium, which is the covering (or lining) of organs and of the body (the skin). The common forms of breast, lung, prostate and bowel cancer are all carcinomas.

Carcinomas are named after the type of epithelial cell that they started in and the part of the body that is affected. There are four different types of epithelial cells:

a. squamous cells - that line different parts of the body, such as the mouth, gullet (oesophagus), and the airways

b. adeno cells - form the lining of all the glands in the body and can be found in organs such as the stomach, ovaries, kidneys and prostate

c. transitional cells - are only found in the lining of the bladder and parts of the urinary system

d. basal cells - that are found in one of the layers of the skin.

A cancer that starts in squamous cells is called a squamous cell carcinoma. A cancer that starts in glandular cells is called an adenocarcinoma. Cancers that start in transitional cells are transitional cell carcinomas, and those that start in basal cells are basal cell carcinomas.

3. Leukaemias and lymphomas

These occur in the tissues where white blood cells (which fight infection in the body) are formed, i.e. the bone marrow and lymphatic system. Leukaemia and lymphoma are quite rare and make up about 6.5% (6.5 in 100) of all cancers.

4. Others forms of cancer

Brain tumours and other very rare forms of cancer make up the remainder of cancers.

What Is Cancer ?

Each year more than a quarter of a million people are diagnosed with cancer in the UK, and 1 in 3 people will develop cancer during their lifetime. But cancer is not common in children or young people - it mainly occurs in the later years of life. Cancers can occur at any age, but the risk of developing cancer increases with age. 64% (64 in 100) of all newly diagnosed cancers occur in people aged 65 years or more. Less than 1% (1 in 100) of cancers are diagnosed in children, aged 0-14 years.

The organs and tissues of the body are made up of tiny building blocks called cells. Cancer is a disease of these cells.

Cells in different parts of the body may look and work differently but most reproduce themselves in the same way. Cells are constantly becoming old and dying, and new cells are produced to replace them. Normally, cells divide in an orderly and controlled manner. If for some reason the process gets out of control, the cells carry on dividing, developing into a lump which is called a tumour.

Tumours can be either benign or malignant. Cancer is the name given to a malignant tumour. Doctors can tell if a tumour is benign or malignant by examining a small sample of cells under a microscope. This is called a biopsy.

In a benign tumour the cells do not spread to other parts of the body and so are not cancerous. However, if they continue to grow at the original site, they may cause a problem by pressing on the surrounding organs.

A malignant tumour consists of cancer cells that have the ability to spread beyond the original area. If the tumour is left untreated, it may spread into and destroy surrounding tissue. Sometimes cells break away from the original (primary) cancer. They may spread to other organs in the body through the bloodstream or lymphatic system.

The lymphatic system is part of the immune system - the body's natural defence against infection and disease. It is a complex system made up of organs, such as bone marrow, the thymus, the spleen, and lymph nodes. The lymph nodes (or glands) throughout the body are connected by a network of tiny lymphatic ducts.

When the cancer cells reach a new area they may go on dividing and form a new tumour. This is known as a secondary cancer or metastasis.

It is important to realise that cancer is not a single disease with a single type of treatment. There are more than 200 different kinds of cancer, each with its own name and treatment.

Selasa, 01 Maret 2011

Oltipraz

Oltipraz is a drug that was originally used to treat intestinal worms. It was later found to prevent a broad variety of cancers (1). This was attributed to its ability to upregulate cellular detoxification and repair mechanisms.

Researchers eventually discovered that oltipraz acts by activating Nrf2, the same transcription factor activated by ionizing radiation and polyphenols (2, 3, 4). Nrf2 activation mounts a broad cellular protective response that appears to reduce the risk of multiple health problems.

A recent paper in Diabetologia illustrates this (5). Investigators put mice on a long-term refined high-fat diet, with or without oltipraz. These carefully crafted diets are very unhealthy indeed, and when fed to rodents they rapidly induce fat gain and something that looks similar to human metabolic syndrome (insulin resistance, abdominal adiposity, blood lipid disturbances). Adding oltipraz to the diet prevented the fat gain, insulin resistance and inflammatory changes that occurred in the refined high-fat diet group.

The difference in fasting insulin was remarkable. The mice taking oltipraz had 1/7 the fasting insulin of the refined high-fat diet comparison group, and 1/3 the fasting insulin of the low-fat comparison group! Yet their glucose tolerance was normal, indicating that they were not low on insulin due to pancreatic damage. The low-fat diet they used in this study was also refined, which is why the two control groups (high-fat and low-fat) didn't diverge more in body fatness and other parameters. If they had used a group fed unrefined rodent chow as the comparator, the differences between groups would have been larger.

This shows that in addition to preventing cancer, Nrf2 activation can attenuate the metabolic damage caused by an unhealthy diet in rodents. Oltipraz illustrates the power of the cellular hormesis response. We can exploit this pathway naturally using polyphenols and other chemicals found in whole plant foods.

Kamis, 24 Februari 2011

Polyphenols, Hormesis and Disease: Part II

In the last post, I explained that the body treats polyphenols as potentially harmful foreign chemicals, or "xenobiotics". How can we reconcile this with the growing evidence that at least a subset of polyphenols have health benefits?

Clues from Ionizing Radiation

One of the more curious things that has been reported in the scientific literature is that although high-dose ionizing radiation (such as X-rays) is clearly harmful, leading to cancer, premature aging and other problems, under some conditions low-dose ionizing radiation can actually decrease cancer risk and increase resistance to other stressors (1, 2, 3, 4, 5). It does so by triggering a protective cellular response, increasing cellular defenses out of proportion to the minor threat posed by the radiation itself. The ability of mild stressors to increase stress resistance is called "hormesis." Exercise is a common example. I've written about this phenomenon in the past (6).

The Case of Resveratrol

Resveratrol is perhaps the most widely known polyphenol, available in supplement stores nationwide. It's seen a lot of hype, being hailed as a "calorie restriction mimetic" and the reason for the "French paradox."* But there is quite a large body of evidence suggesting that resveratrol functions in the same manner as low-dose ionizing radiation and other bioactive polyphenols: by acting as a mild toxin that triggers a hormetic response (7). Just as in the case of radiation, high doses of resveratrol are harmful rather than helpful. This has obvious implications for the supplementation of resveratrol and other polyphenols. A recent review article on polyphenols stated that while dietary polyphenols may be protective, "high-dose fortified foods or dietary supplements are of unproven efficacy and possibly harmful" (8).

The Cellular Response to Oxidants

Although it may not be obvious, radiation and polyphenols activate a cellular response that is similar in many ways. Both activate the transcription factor Nrf2, which activates genes that are involved in detoxification of chemicals and antioxidant defense**(9, 10, 11, 12). This is thought to be due to the fact that polyphenols, just like radiation, may temporarily increase the level of oxidative stress inside cells. Here's a quote from the polyphenol review article quoted above (13):
We have found that [polyphenols] are potentially far more than 'just antioxidants', but that they are probably insignificant players as 'conventional' antioxidants. They appear, under most circumstances, to be just the opposite, i.e. prooxidants, that nevertheless appear to contribute strongly to protection from oxidative stress by inducing cellular endogenous enzymic protective mechanisms. They appear to be able to regulate not only antioxidant gene transcription but also numerous aspects of intracellular signaling cascades involved in the regulation of cell growth, inflammation and many other processes.
It's worth noting that this is essentially the opposite of what you'll hear on the evening news, that polyphenols are direct antioxidants. The scientific cutting edge has largely discarded that hypothesis, but the mainstream has not yet caught on.

Nrf2 is one of the main pathways by which polyphenols increase stress resistance and antioxidant defenses, including the key cellular antioxidant glutathione (14). Nrf2 activity is correlated with longevity across species (15). Inducing Nrf2 activity via polyphenols or by other means substantially reduces the risk of common lifestyle disorders in animal models, including cardiovascular disease, diabetes and cancer (16, 17, 18), although Nrf2 isn't necessarily the only mechanism. The human evidence is broadly consistent with the studies in animals, although not as well developed.

One of the most interesting effects of hormesis is that exposure to one stressor can increase resistance to other stressors. For example, long-term consumption of high-polyphenol chocolate increases sunburn resistance in humans, implying that it induces a hormetic response in skin (19). Polyphenol-rich foods such as green tea reduce sunburn and skin cancer development in animals (20, 21).

Chris Masterjohn first introduced me to Nrf2 and the idea that polyphenols act through hormesis. Chris studies the effects of green tea on health, which seem to be mediated by polyphenols.

A Second Mechanism

There is a place in the body where polyphenols are concentrated enough to be direct antioxidants: in the digestive tract after consuming polyphenol-rich foods. Digestion is a chemically harsh process that readily oxidizes ingested substances such as polyunsaturated fats (22). Oxidized fat is neither healthy when it's formed in the deep fryer, nor when it's formed in the digestive tract (23, 24). Eating polyphenol-rich foods effectively prevents these fats from being oxidized during digestion (25). One consequence of this appears to be better absorption and assimilation of the exceptionally fragile omega-3 polyunsaturated fatty acids (26).

What does it all Mean?

I think that overall, the evidence suggests that polyphenol-rich foods are healthy in moderation, and eating them on a regular basis is generally a good idea. Certain other plant chemicals, such as suforaphane found in cruciferous vegetables, and allicin found in garlic, exhibit similar effects and may also act by hormesis (27). Some of the best-studied polyphenol-rich foods are tea (particularly green tea), blueberries, extra-virgin olive oil, red wine, citrus fruits, hibiscus tea, soy, dark chocolate, coffee, turmeric and other herbs and spices, and a number of traditional medicinal herbs. A good rule of thumb is to "eat the rainbow", choosing foods with a variety of colors.

Supplementing with polyphenols and other plant chemicals in amounts that would not be achievable by eating food is probably not a good idea.


* The "paradox" whereby the French eat a diet rich in saturated fat, yet have a low heart attack risk compared to other affluent Western nations.

** Genes containing an antioxidant response element (ARE) in the promoter region. ARE is also sometimes called the electrophile response element (EpRE).

Kamis, 19 Agustus 2010

Tropical Plant Fats: Coconut Oil, Part II

Heart Disease: Animal Studies

Although humans aren't rats, animal studies are useful because they can be tightly controlled and experiments can last for a significant portion of an animal's lifespan. It's essentially impossible to do a tightly controlled 20-year feeding study in humans.

The first paper I'd like to discuss come from the lab of Dr. Thankappan Rajamohan at the university of Kerala (1). Investigators fed three groups of rats different diets:
  1. Sunflower oil plus added cholesterol
  2. Copra oil, a coconut oil pressed from dried coconuts, plus added cholesterol
  3. Freshly pressed virgin coconut oil, plus added cholesterol
Diets 1 and 2 resulted in similar lipids, while diet 3 resulted in lower LDL and higher HDL. A second study also showed that diet 3 resulted in lower oxidized LDL, a dominant heart disease risk factor (2). Overall, these papers showed that freshly pressed virgin coconut oil, with its full complement of "minor constituents"*, partially protects rats against the harmful effects of cholesterol overfeeding. These are the only papers I could find on the cardiovascular effects of unrefined coconut oil in animals!

Although unrefined coconut oil appears to be superior, even refined coconut oil isn't as bad as it's made out to be. For example, compared to refined olive oil, refined coconut oil protects against atherosclerosis (hardening and thickening of the arteries) in a mouse model of coronary heart disease (LDL receptor knockout). In the same paper, coconut oil caused more atherosclerosis in a different mouse model (ApoE knockout) (3). So the vascular effects of coconut oil depend in part on the animals' genetic background.

In general, I've found that the data are extremely variable from one study to the next, with no consistent trend showing refined coconut oil to be protective or harmful relative to refined monounsaturated fats (like olive oil) (4). In some cases, polyunsaturated oils cause less atherosclerosis than coconut oil in the context of an extreme high-cholesterol diet because they sometimes lead to blood lipid levels that are up to 50% lower. However, even this isn't consistent across experiments. Keep in mind that atherosclerosis is only one factor in heart attack risk.

What happens if you feed coconut oil to animals without adding cholesterol, and without giving them genetic mutations that promote atherosclerosis? Again, the data are contradictory. In rabbits, one investigator showed that serum cholesterol increases transiently, returning to baseline after about 6 months, and atherosclerosis does not ensue (5). A different investigator showed that coconut oil feeding results in lower blood lipid oxidation than sunflower oil (6). Yet a study from the 1980s showed that in the context of a terrible diet composition (40% sugar, isolated casein, fat, vitamins and minerals), refined coconut oil causes elevated blood lipids and atherosclerosis (7). This is almost certainly because overall diet quality influences the response to dietary fats in rabbits, as it does in other mammals.

Heart Disease: Human Studies


It's one of the great tragedies of modern biomedical research that most studies focus on nutrients rather than foods. This phenomenon is called "nutritionism". Consequently, most of the studies on coconut oil used a refined version, because the investigators were most interested in the effect of specific fatty acids. The vitamins, polyphenols and other minor constituents of unrefined oils are eliminated because they are known to alter the biological effects of the fats themselves. Unfortunately, any findings that result from these experiments apply only to refined fats. This is the fallacy of the "X fatty acid does this and that" type statements-- they ignore the biological complexity of whole foods. They would probably be correct if you were drinking purified fatty acids from a beaker.

Generally, the short-term feeding studies using refined coconut oil show that it increases both LDL ("bad cholesterol") and HDL ("good cholesterol"), although there is so much variability between studies that it makes firm conclusions difficult to draw (8, 9). As I've written in the past, the ability of saturated fats to elevate LDL appears to be temporary; both human and certain animal studies show that it disappears on timescales of one year or longer (10, 11). That hasn't been shown specifically for coconut oil that I'm aware of, but it could be one of the reasons why traditional cultures eating high-coconut diets don't have elevated serum cholesterol.

Another marker of cardiovascular disease risk is lipoprotein (a), abbreviated Lp(a). This lipoprotein is a carrier for oxidized lipids in the blood, and it correlates with a higher risk of heart attack. Refined coconut oil appears to lower Lp(a), while refined sunflower oil increases it (12).

Unfortunately, I haven't been able to find any particularly informative studies on unrefined coconut oil in humans. The closest I found was a study from Brazil showing that coconut oil reduced abdominal obesity better than soybean oil in conjunction with a low-calorie diet, without increasing LDL (13). It would be nice to have more evidence in humans confirming what has been shown in rats that there's a big difference between unrefined and refined coconut oil.

Coconut Oil and Body Fat

In addition to the study mentioned above, a number of experiments in animals have shown that "medium-chain triglycerides", the predominant type of fat in coconut oil, lead to a lower body fat percentage than most other fats (14). These findings have been replicated numerous times in humans, although the results have not always been consistent (15). It's interesting to me that these very same medium-chain saturated fats that are being researched as a fat loss tool are also considered by mainstream diet-heart researchers to be among the most deadly fatty acids.

Coconut Oil and Cancer

Refined coconut oil produces less cancer than seed oils in experimental animals, probably because it's much lower in omega-6 polyunsaturated fat (16, 17). I haven't seen any data in humans.

The Bottom Line

There's very little known about the effect of unrefined coconut oil on animal and human health, however what is published appears to be positive, and is broadly consistent with the health of traditional cultures eating unrefined coconut foods. The data on refined coconut oil are conflicting and frustrating to sort through. The effects of refined coconut oil seem to depend highly on dietary context and genetic background. In my opinion, virgin coconut oil can be part of a healthy diet, and may even have health benefits in some contexts.


* Substances other than the fat itself, e.g. vitamin E and polyphenols. These are removed during oil refining.

Sabtu, 03 Juli 2010

Tropical Plant Fats: Palm Oil

A Fatal Case of Nutritionism

The concept of 'nutritionism' was developed by Dr. Gyorgy Scrinis and popularized by the food writer Michael Pollan. It states that the health value of a food can be guessed by the sum of the nutrients it contains. Pollan argues, I think rightfully, that nutritionism is a reductionist philosophy that assumes we know more about food composition and the human body than we actually do. You can find varying degrees of this philosophy in most mainstream discussions of diet and health*.

One conspicuous way nutritionism manifests is in the idea that saturated fat is harmful. Any fat rich in saturated fatty acids is typically assumed to be unhealthy, regardless of its other constituents. There is also apparently no need to directly test that assumption, or even to look through the literature to see if the assumption has already been tested. In this manner, 'saturated' tropical plant fats such as palm oil and coconut oil have been labeled unhealthy, despite essentially no direct evidence that they're harmful. As we'll see, there is actually quite a bit of evidence, both indirect and direct, that their unrefined forms are not harmful and perhaps even beneficial.

Palm Oil and Heart Disease

Long-time readers may recall a post I wrote a while back titled Ischemic Heart Attacks: Disease of Civilization (1). I described a study from 1964 in which investigators looked for signs of heart attacks in thousands of consecutive autopsies in the US and Africa, among other places. They found virtually none in hearts from Nigeria and Uganda (3 non-fatal among more than 4,500 hearts), while Americans of the same age had very high rates (up to 1/3 of hearts).

What do they eat in Nigeria? Typical Nigerian food involves home-processed grains, starchy root vegetables, beans, fruit, vegetables, peanuts, red palm oil, and a bit of dairy, fish and meat**. The oil palm Elaeis guineensis originated in West Africa and remains one of the main dietary fats throughout the region.

To extract the oil, palm fruit are steamed, and the oily flesh is removed and pressed. It's similar to olive oil in that it is extracted gently from an oil-rich fruit, rather than harshly from an oil-poor seed (e.g., corn or soy oil). The oil that results is deep red and is perhaps the most nutrient-rich fat on the planet. The red color comes from carotenes, but red palm oil also contains a large amount of vitamin E (mostly tocotrienols), vitamin K1, coenzyme Q10 and assorted other fat-soluble constituents. This adds up to a very high concentration of fat-soluble antioxidants, which are needed to protect the fat from rancidity in hot and sunny West Africa. Some of these make it into the body when it's ingested, where they appear to protect the body's own fats from oxidation.

Mainstream nutrition authorities state that palm oil should be avoided due to the fact that it's approximately half saturated. This is actually one of the main reasons palm oil was replaced by hydrogenated seed oils in the processed food industry. Saturated fat raises blood cholesterol, which increases the risk of heart disease. Doesn't it? Let's see what the studies have to say.

Most of the studies were done using refined palm oil, unfortunately. Besides only being relevant to processed foods, this method also introduces a new variable because palm oil can be refined and oxidized to varying degrees. However, a few studies were done with red palm oil, and one even compared it to refined palm oil. Dr. Suzanna Scholtz and colleagues put 59 volunteers on diets predominating in sunflower oil, refined palm oil or red palm oil for 4 weeks. LDL cholesterol was not different between the sunflower oil and red palm oil groups, however the red palm oil group saw a significant increase in HDL. LDL and HDL both increased in the refined palm oil group relative to the sunflower oil group (2).

Although the evidence is conflicting, most studies have not been able to replicate the finding that refined palm oil increases LDL relative to less saturated oils (3, 4). This is consistent with studies in a variety of species showing that saturated fat generally doesn't raise LDL compared to monounsaturated fat in the long term, unless a large amount of purified cholesterol is added to the diet (5).

Investigators have also explored the ability of palm oil to promote atherosclerosis, or hardening and thickening of the arteries, in animals. Not only does palm oil not promote atherosclerosis relative to monounsaturated fats (e.g., olive oil), but in its unrefined state it actually protects against atherosclerosis (6, 7). A study in humans hinted at a possible explanation: compared to a monounsaturated oil***, palm oil greatly reduced oxidized LDL (8). As a matter of fact, I've never seen a dietary intervention reduce oxLDL to that degree (69%). oxLDL is a major risk factor for cardiovascular disease, and a much better predictor of risk than the typically measured LDL cholesterol (9). The paper didn't state whether or not the palm oil was refined. I suspect it was lightly refined, but still rich in vitamin E and CoQ10.

As I discussed in my recent interview with Jimmy Moore, atherosclerosis is only one factor in heart attack risk (10). Several other factors are also major determinants of risk: clotting tendency, plaque stability, and susceptibility to arrhythmia. Another factor that I haven't discussed is how resistant the heart muscle is to hypoxia, or loss of oxygen. If the coronary arteries are temporarily blocked-- a frequent occurrence in modern people-- the heart muscle can be damaged. Dietary factors determine the degree of damage that results. For example, in rodents, nitrites derived from green vegetables protect the heart from hypoxia damage (11). It turns out that red palm oil is also protective (12, 13). Red palm oil also protects against high blood pressure in rats, an effect attributed to its ability to reduce oxidative stress (14, 15).

Together, the evidence suggests that red palm oil does not contribute to heart disease risk, and in fact is likely to be protective. The benefits of red palm oil probably come mostly from its minor constituents, i.e. the substances besides its fatty acids. Several studies have shown that a red palm oil extract called palmvitee lowers serum lipids in humans (16, 17). The minor constituents are precisely what are removed during the refining process.

Palm Oil and the Immune System

Red palm oil also has beneficial effects on the immune system in rodents. It protects against bacterial infection when compared with soybean oil (18). It also protects against certain cancers, compared to other oils (19, 20). This may be in part due to its lower content of omega-6 linoleic acid (roughly 10%), and minor constituents.

The Verdict

Yet again, nutritionism has gotten itself into trouble by underestimating the biological complexity of a whole food. Rather than being harmful to human health, red palm oil, an ancient and delicious food, is likely to be protective. It's also one of the cheapest oils available worldwide, due to the oil palm's high productivity. It has a good shelf life and does not require refrigeration. Its strong, savory flavor goes well in stews, particularly meat stews. It isn't available in most grocery stores, but you can find it on the internet. Make sure not to confuse it with refined palm oil or palm kernel oil.


* The approach that Pollan and I favor is a simpler, more empirical one: eat foods that have successfully sustained healthy cultures.

** Some Nigerians are also pastoralists that subsist primarily on dairy.

*** High oleic sunflower oil, from a type of sunflower bred to be high in monounsaturated fat and low in linoleic acid. I think it's probably among the least harmful refined oils. I use it sometimes to make mayonnaise. It's often available in grocery stores, just check the label.

Kamis, 10 Juni 2010

Nitrate: a Protective Factor in Leafy Greens

Cancer Link and Food Sources

Nitrate (NO3) is a molecule that has received a lot of bad press over the years. It is thought to promote digestive cancers, in part due to its ability to form carcinogens when used as a preservative for processed meat. Because of this (1), nitrate was viewed with suspicion and a number of countries imposed strict limits on its use as a food additive.

But what if I told you that by far the greatest source of nitrate in the modern diet isn't processed meat-- but vegetables, particularly leafy greens (2)? And that the evidence linking exposure to nitrate itself has largely failed to materialize? For example, one study found no difference in the incidence of gastric cancer between nitrate fertilizer plant workers and the general population (3). Most other studies in animals and humans have not supported the hypothesis that nitrate itself is carcinogenic (4, 5, 6), but rather that they are only carcinogenic in the context of processed meats due to the formation of carcinogenic nitrosamines. This, combined with recent findings on nitrate biology, has changed the way we think about this molecule in recent years.

A New Example of Human Symbiosis

In 2003, Dr. K. Cosby and colleagues showed that nitrite (NO2; not the same as nitrate) dilates blood vessels in humans when infused into the blood (7). Investigators subsequently uncovered an amazing new example of human-bacteria symbiosis: dietary nitrate (NO3) is absorbed from the gut into the bloodstream and picked up by the salivary glands. It's then secreted into saliva, where oral bacteria use it as an energy source, converting it to nitrite (NO2). After swallowing, the nitrite is reabsorbed into the bloodstream (8). Humans and oral bacteria may have co-evolved to take advantage of this process. Antibacterial mouthwash prevents it.

Nitrate Protects the Cardiovascular System

In 2008, Dr. Andrew J. Webb and colleagues showed that nitrate in the form of 1/2 liter of beet juice (equivalent in volume to about 1.5 soda cans) substantially lowers blood pressure in healthy volunteers for over 24 hours. It also preserved blood vessel performance after brief oxygen deprivation, and reduced the tendency of the blood to clot (9). These are all changes that one would expect to protect against cardiovascular disease. Another group showed that in monkeys, the ability of nitrite to lower blood pressure did not diminish after two weeks, showing that the animals did not develop a tolerance to it on this timescale (10).

Subsequent studies showed that dietary nitrite reduces blood vessel dysfunction and inflammation (CRP) in cholesterol-fed mice (11). Low doses of nitrite also dramatically reduce tissue death in the hearts of mice exposed to conditions mimicking a heart attack, as well as protecting other tissues against oxygen deprivation damage (12). The doses used in this study were the equivalent of a human eating a large serving (100 g; roughly 1/4 lb) of lettuce or spinach.

Mechanism

Nitrite is thought to protect the cardiovascular system by serving as a precursor for nitric oxide (NO), one of the most potent anti-inflammatory and blood vessel-dilating compounds in the body (13). A decrease in blood vessel nitric oxide is probably one of the mechanisms of diet-induced atherosclerosis and increased clotting tendency, and it is likely an early consequence of eating a poor diet (14).

The Long View

Leafy greens were one of the "protective foods" emphasized by the nutrition giant Sir Edward Mellanby (15), along with eggs and high-quality full-fat dairy. There are many reasons to believe greens are an excellent contribution to the human diet, and what researchers have recently learned about nitrate biology certainly reinforces that notion. Leafy greens may be particularly useful for the prevention and reversal of cardiovascular disease, but are likely to have positive effects on other organ systems both in health and disease. It's ironic that a molecule suspected to be the harmful factor in processed meats is turning out to be one of the major protective factors in vegetables.

Sabtu, 22 Mei 2010

Pastured Dairy may Prevent Heart Attacks

Not all dairy is created equal. Dairy from grain-fed and pasture-fed cows differs in a number of ways. Pastured dairy contains more fat-soluble nutrients such as vitamin K2, vitamin A, vitamin E, carotenes and omega-3 fatty acids. It also contains more conjugated linoleic acid, a fat-soluble molecule that has been under intense study due to its ability to inhibit obesity and cancer in animals. The findings in human supplementation trials have been mixed, some confirming the animal studies and others not. In feeding experiments in cows, Dr. T. R. Dhiman and colleagues found the following (1):
Cows grazing pasture and receiving no supplemental feed had 500% more conjugated linoleic acid in milk fat than cows fed typical dairy diets.
Fat from ruminants such as cows, sheep and goats is the main source of CLA in the human diet. CLA is fat-soluble. Therefore, skim milk doesn't contain any. It's also present in human body fat in proportion to dietary intake. This can come from dairy or flesh.

In a recent article from the AJCN, Dr. Liesbeth Smit and colleagues examined the level of CLA in the body fat of Costa Rican adults who had suffered a heart attack, and compared it to another group who had not (a case-control study, for the aficionados). People with the highest level of CLA in their body fat were 49% less likely to have had a heart attack, compared to those with the lowest level (2).

Since dairy was the main source of CLA in this population, the association between CLA and heart attack risk is inextricable from the other components in pastured dairy fat. In other words, CLA is simply a marker of pastured dairy fat intake in this population, and the (possible) benefit could just as easily have come from vitamin K2 or something else in the fat.

This study isn't the first one to suggest that pastured dairy fat may be uniquely protective. The Rotterdam and EPIC studies found that a higher vitamin K2 intake is associated with a lower risk of heart attack, cancer and overall mortality (3, 4, 5). In the 1940s, Dr. Weston Price estimated that pastured dairy contains up to 50 times more vitamin K2 than grain-fed dairy. He summarized his findings in the classic book Nutrition and Physical Degeneration. This finding has not been repeated in recent times, but I have a little hunch that may change soon...

Vitamin K2
Cardiovascular Disease and Vitamin K2
Can Vitamin K2 Reverse Arterial Calcification?

Kamis, 25 Februari 2010

Corn Oil and Cancer: Reality Strikes Again

The benefits of corn oil keep rolling in. In a new study by Stephen Freedland's group at Duke, feeding mice a diet rich in butter and lard didn't promote the growth of transplanted human prostate cancer cells any more than a low-fat diet (1).

Why do we care? Because other studies, including one from the same investigators, show that corn oil and other industrial seed oils strongly promote prostate cancer cell growth and increase mortality in similar models (2, 3).

From the discussion section:
Current results combined with our prior results suggest that lowering the fat content of a primarily saturated fat diet offers little survival benefit in an intact or castrated LAPC-4 xenograft model. In contrast to the findings when omega-6 fats are used, these results raise the possibility that fat type may be as important as fat amount or perhaps even more important.
The authors seem somewhat surprised and pained by the result. Kudos for publishing it. However, there's nothing to be surprised about. There's a large body of evidence implicating excess omega-6 fat in a number of cancer models. Reducing omega-6 to below 4% of calories has a dramatic effect on cancer incidence and progression*. In fact, there have even been several experiments showing that butter and other animal fats promote cancer growth to a lesser degree than margarine and omega-6-rich seed oils. I discussed that here.

I do have one gripe with the study. They refer to the diet as "saturated fat based". That's inaccurate terminology. I see it constantly in the diet-health literature. If it were coconut oil, then maybe I could excuse it, because coconut fat is 93% saturated. But this diet was made of lard and butter, the combination of which is probably about half saturated. The term "animal fat" or "low-omega-6 fat" would have been more accurate. At least they listed the diet composition. Many studies don't even bother, leaving it to the reader to decide what they mean by "saturated fat".


* The average American eats 7-8% omega-6 by calories. This means it will be difficult to see a relationship between omega-6 intake and cancer (or heart disease, or most things) in observational studies in the US or other industrial nations, because we virtually all eat more than 4% of calories as omega-6. Until the 20th century, omega-6 intake was below 4%, and usually closer to 2%, in most traditional societies. That's where it remains in contemporary traditional societies unaffected by industrial food habits, such as Kitava. Our current omega-6 intake is outside the evolutionary norm.

Rabu, 25 Maret 2009

Skin Texture, Cancer and Dietary Fat

Richard and I exchanged a series of e-mails last week in which he remarked that Thai people generally have nice skin, which is something I've also noticed in Thai immigrants to the U.S. I believe you can often tell what kind of fat a person eats by looking at their face, especially as people age or bear children.

People who eat predominantly traditional fats like butter and coconut oil usually have nice skin. It's smoother, rosier and it ages more gracefully than the skin of a person who eats industrial fats like soy and corn oil. Coconut is the predominant fat in the traditional Thai diet. Coconut fat is about 87% saturated, far more than any animal fat*. Coconut oil and butter are very low in omega-6 linoleic acid, while industrial vegetable oils and margarine contain a lot of it.

I saw a great movie last week called "The Betrayal", about a family of Lao refugees that immigrated to the U.S. in the late 1970s. The director followed the family for 23 years as they tried to carve out a life for themselves in Brooklyn. The main fats in the traditional Lao diet are lard and coconut milk. The mother of the family was a nice looking woman when she left Laos. She was thin and had great skin and teeth, despite having delivered half a dozen children at that point. After 23 years in the U.S., she was overweight and her skin was colorless and pasty. At the end of the movie, they return to Laos to visit their family there. The woman's mother was still alive. She was nearly 100 years old and looked younger than her daughter.

Well that's a pretty story, but let's hit the science. There's a mouse model of skin cancer called the Skh:HR-1 hairless mouse. When exposed to UV rays and/or topical carcinogens, these mice develop skin cancer just like humans (especially fair-skinned humans). Researchers have been studying the factors that determine their susceptibility to skin cancer, and fat is a dominant one. Specifically, their susceptibility to skin cancer is determined by the amount of linoleic acid in the diet.

In 1994, Drs. Cope and Reeve published a study using hairless mice in which they put groups of mice on two different diets (Cope, R. B. & Reeve, V. E. (1994) Photochem. Photobiol. 59: 24 S). The first diet contained 20% margarine; the second was identical but contained 20% butter. Mice eating margarine developed significantly more skin tumors when they were exposed to UV light or a combination of UV and a topical carcinogen. Researchers have known this for a long time. Here's a quote from a review published in 1987:
Nearly 50 years ago the first reports appeared that cast suspicion on lipids, or peroxidative products thereof, as being involved in the expression of actinically induced cancer. Whereas numerous studies have implicated lipids as potentiators of specific chemical-induced carcinogenesis, only recently has the involvement of these dietary constituents in photocarcinogenesis been substantiated. It has now been demonstrated that both level of dietary lipid intake and degree of lipid saturation have pronounced effects on photoinduced skin cancer, with increasing levels of unsaturated fat intake enhancing cancer expression. The level of intake of these lipids is also manifested in the level of epidermal lipid peroxidation.
Here's a quote from a study conducted in 1996:
A series of semi-purified diets containing 20% fat by weight, of increasing proportions (0, 5%, 10%, 15% or 20%) of polyunsaturated sunflower oil mixed with hydrogenated saturated cottonseed oil, was fed to groups of Skh:HR-1 hairless mice during induction and promotion of photocarcinogenesis. The photocarcinogenic response was of increasing severity as the polyunsaturated content of the mixed dietary fat was increased, whether measured as tumour incidence, tumour multiplicity, progression of benign tumours to squamous cell carcinoma, or reduced survival... These results suggest that the enhancement of photocarcinogenesis by the dietary polyunsaturated fat component is mediated by an induced predisposition to persistent immunosuppression caused by the chronic UV irradiation, and supports the evidence for an immunological role in dietary fat modulation of photocarcinogenesis in mice.
In other words, UV-induced cancer increased in proportion to the linoleic acid content of the diet, because linoleic acid suppresses the immune system's cancer-fighting ability!

It doesn't end at skin cancer. In animal models, a number of cancers are highly sensitive to the amount of linoleic acid in the diet, including breast cancer. Once again, butter beats margarine and vegetable oils. Spontaneous breast tumors develop only half as frequently in rats fed butter than in rats fed margarine or safflower oil (Yanagi, S. et al. (1989) Comparative effects of butter, margarine, safflower oil and dextrin on mammary tumorigenesis in mice and rats. In: The Pharmacological Effects of Lipids.). The development of breast tumors in rats fed carcinogens is highly dependent on the linoleic acid content of the diet. The effect plateaus around 4.4% of calories, after which additional linoleic acid has no further effect.

Conversely, omega-3 fish oil protects against skin cancer in the hairless mouse, even in large amounts. In another study, not only did fish oil protect against skin cancer, it doubled the amount of time researchers had to expose the mice to UV light to cause sunburn!

Thus, the amount of linoleic acid in the diet as well as the balance between omega-6 and omega-3 determine the susceptibility of the skin to damage from UV rays. This is a very straightforward explanation for the beautiful skin of people eating traditional fats like butter and coconut oil. It's also a straightforward explanation for the poor skin and sharply rising melanoma incidence of Western nations (source). Melanoma is the most deadly form of skin cancer. If you're dark-skinned, you're off the hook:

I believe the other factor contributing to rising melanoma incidence is sunscreen. Most sunscreens block sunburn-causing UVB rays but not melanoma-causing UVA rays. The fact that they allow you to remain in the sun for longer without burning means they increase your exposure to UVA. I've written about this before. Sunscreen also blocks vitamin D formation in the skin, a process that some researchers believe also promotes cancer. I'll end with a couple more graphs that are self-explanatory (source). "PUFA" stands for polyunsaturated faty acids, and primarily represents linoleic acid:





*Not only do Thais have clear skin, they also have clear arteries. Autopsies performed in the 1960s showed that residents of Bangkok had a low prevalence of atherosclerosis and a rate of heart attack (myocardial infarction) about 1/10 that of Americans living in Los Angeles.

Kamis, 12 Februari 2009

Low Stomach Acid and Nutrient Absorption

As I mentioned here and here, low stomach acid (hypochlorhydria) causes many problems, including bacterial overgrowth in the small intestine, lowered resistance to infection by ingested pathogens, an increase in gastric cancer susceptibility, and reduced nutrient absorption. It has the potential to underlie many other issues, including food sensitivities. The prevalence varies by age, increasing from less than 10% in the young to over 50% in the elderly.

In a previous post, I mentioned a few nutrients I had come across that require full stomach acidity for optimum absorption. I recently found a nice paper from 1989 titled "Hypochlorhydria: a Factor in Nutrition", which broadened my perspective. Here's a revised list of nutrients known to be affected by hypochlorhydria, as of 1989:
  • Calcium
  • Iron
  • Folic acid
  • Vitamin B6
  • Vitamin B12
  • Vitamin A
  • Vitamin E
  • Niacin
  • Protein
That's a hefty list, and it's not even comprehensive!

Rabu, 04 Februari 2009

Sugar, Hydrogen, Bacteria and Maldigestion

There are several ways to cause a nutrient deficiency. The first is to eat too little of a nutrient. Another way is to burn through your body's nutrient stores at an accelerated rate, for example, what omega-6 vegetable oils do to vitamin E, and what wheat bran does to vitamin D. A third way is to eat enough nutrients but fail to absorb them efficiently.

A good way to reduce your absorption of nutrients is to lower your stomach's acidity. This will protect you from those pesky nutrients protein, vitamin B12, and iron (and probably others as well). The stomach is one tough organ. When it receives food, a healthy stomach lowers its pH to roughly 2.0 by secreting hydrochloric acid. That's more acidic than lemon juice and more than 10 times more acidic than vinegar. This begins to break food down, and will kill most bacteria and other pathogens. Stomach acidity is basically the body's way of "cooking" food before further digestion. At the same time, the stomach secretes pepsin, which is an acid-stable enzyme that digests protein.

Insufficient stomach acidity promotes bacterial overgrowth in the small intestine and allows undigested proteins into the intestine. The gastrin knockout mouse, which is incapable of producing stomach acid, suffers from bacterial overgrowth, inflammation, damage and precancerous polyps in its intestines. The same thing happens when you treat mice with a drug that inhibits stomach acidification.

There are a few different ways to reduce your stomach's acidity level. The most straightforward is to take an antacid, or any number of drugs that lower stomach acidity (as in the mouse study above). But can we do it naturally? Sure, all it takes is a little Helicobacter pylori infection! Luckily, most people already have one.

H. pylori is a bacterium that's the main proximal cause of stomach ulcers. Antibiotics are now the standard treatment for ulcers, and they're effective. Treating an asymptomatic H. pylori infection with antibiotics increases stomach acidity, suggesting that H. pylori is capable of suppressing the secretion of stomach acid. In another study, eradicating H. pylori with antibiotics improved nearly all patients suffering from hypochlorhydria (insufficient stomach acid).

Like any organism, H. pylori likes to stay well-fed. Its favorite food is hydrogen gas (H2), and the more it gets, the more it grows. It's not the only bacterium to like H2. Salmonella, of food poisoning fame, requires H2 to become pathogenic. Clostridium bacteria are also associated with elevated H2. H2 is produced by the fermentation of food by bacteria in the digestive tract. It's very small so it diffuses around the body, reaching the stomach lining where it's eagerly gobbled up by H. pylori. It may be equally good food for a number of other parasites around the body.

Now let's stop beating around the bush and get to the meat of this post. It's all summed up in a beautiful title: Fructose Intake at Current Levels in the United States May Cause Gastrointestinal Distress in Normal Adults. Dr. Richard W. McCallum et al. fed doses of isolated fructose to 15 normal adults. Can I say it any better than the abstract?
More than half of the 15 adults tested showed evidence of fructose malabsorption after 25 g fructose and greater than two thirds showed malabsorption after 50 g fructose... Fructose, in amounts commonly consumed, may result in mild gastrointestinal distress in normal people.
Here's where it gets really interesting. One of the measures of malabsorption they used was H2 on the breath. Both the 25g and the 50g doses caused a large increase in H2, especially the 50g dose (5-fold increase). This is the same thing you see in people who are lactose intolerant. Bacterial fermentation is the only significant source of H2 in the human body. That means the fructose was hanging around in the small intestine for long enough to be decomposed by the local bacteria, who took advantage of it to proliferate.

Certain types of fiber also promote H2 production. Resistant starch, as well as certain non-caloric sweeteners, are readily fermented into H2 in some people. Cellulose, the predominant fiber in vegetables and grains, does not increase H2. The large difference in fiber content of rural vs. urban Mexican diets
doesn't seem to correlate with H2 production by intestinal bacteria. Interestingly, both white and whole wheat bread increase H2 production.

Let's put those doses of fructose into perspective. One medium banana contains about 7 grams. A 16-ounce bottle of apple juice contains about 30 grams. A slice of cake contains about 12. One "child-size" 12 ounce cup of Coca-Cola from McDonald's contains 17 grams (as long as you don't get a refill!). One large 32 ounce Coca-Cola contains 47 grams. Your H. pylori will be VERY pleased if you drink one of those, especially if you use it to wash down the white flour bun on your hamburger.

I do think it's important to mention that the study described above used isolated fructose. It's not clear that other sources of fructose would behave the same. For example, the presence of glucose enhances fructose absorption. Fruit, table sugar and high-fructose corn syrup all contain glucose. It's also not clear what the effect would be of eating fructose with a meal rather than in isolation. None of this has been studied to my knowledge, so we're left extrapolating from studies that used pure fructose.

Now let's connect the dots. Excessive fructose, certain types of fiber, and wheat cause bacterial overgrowth and H2 production (if you believe the fructose-H2 connection). Elevated H2 causes overgrowth of H. pylori and possibly other pathogenic bacteria in the body. H. pylori lowers stomach acid, causing further overgrowth of bacteria in the small intestine. This causes inflammation and increases the risk for digestive cancers.

Decreased stomach acid also causes malabsorption of protein, B12, iron and perhaps other nutrients. It allows undigested protein to travel into the small intestine. This could potentially be very important. For example, many people are allergic to the casein in milk. It's one of the two most common alleriges, along with gluten. Both casein and gluten are proteins. A normally functioning stomach at the proper pH should completely digest casein. You can't be allergic to casein if there's none around. I don't know if the same applies to gluten.

Robust digestion may explain why many healthy non-industrial groups do very well eating dairy, sometimes to the exclusion of nearly everything else, yet many people in modern societies do better without dairy protein (butter is typically well tolerated). This phenomenon could also go a long way toward explaining the fact that allergies are becoming more and more common in industrial nations as we consume more sugar.

Thanks to Peter and Matt Stone for some of the ideas I incorporated into this post. Thanks to pbo31 for the CC photo.

Sabtu, 03 Januari 2009

Vitamin D and Cancer

I'd like to point readers to a couple of posts by Richard Nikoley over at Free the Animal, on the relationship between vitamin D status and various types of cancer. The epidemiology consistently shows an inverse relationship between vitamin D levels and cancer incidence. A few intervention trials also support a protective role of vitamin D against cancer. Increased sunscreen use has not reduced melanoma incidence, to the contrary. I've discussed this before as well. Richard got his graphs from the website GrassrootsHealth.

Vitamin D deficiency and All Cancer

Melanoma, Sun and its Synthetic Defeat (sunscreen)

Vitamin D is not just another vitamin. It's a hormone precursor that plays a fundamental role in the regulation of numerous bodily processes. Sunlight is an essential nutrient for physical and mental health.

Here are the best natural sources of vitamin D:
  • Sunlight
  • High-vitamin cold liver oil
  • Summer blood from animals raised outdoors (for example, blood sausage)
  • Fatty fish
Vitamin D is one of the few nutrients that may be worth supplementing during wintertime. Make sure to buy D3 and take at least 2,000 IU if you are going to bother.

Sabtu, 01 November 2008

Book Review: Dangerous Grains

Dangerous Grains is about the health hazards of gluten grains. It's co-written by James Braly, an M.D. who specializes in food allergies, and Ron Hoggan, a celiac patient who has written widely on the subject.

Celiac disease is a degeneration of the intestinal lining caused by exposure to gluten. Gluten sensitivity is a broader term that encompasses any of the numerous symptoms that can occur throughout the body when susceptible people eat gluten. The term gluten sensitivity includes celiac disease. Gluten is a protein found in wheat, its close relatives (kamut, spelt, triticale), barley and rye. Wheat is the most concentrated source.


Dangerous Grains is a good overview of the mountain of data on celiac disease and gluten sensitivity that few people outside the field are familiar with. For example, did you know:

  • An estimated one percent of the U.S. population suffers from celiac disease.

  • Approximately 12 percent of the US population may suffer from gluten sensitivity, according to blood antibody tests.

  • Gluten can damage nearly any part of the body, including the brain, the digestive tract, the skin and the pancreas. Sometimes gastrointestinal symptoms are absent.

  • Both celiac and other forms of gluten sensitivity increase the risk of a large number of diseases, such as type 1 diabetes and cancer, often dramatically.

  • The majority of people with gluten sensitivity are not diagnosed.

  • Most doctors don't realize how common gluten sensitivity is, so they rarely test for it.

  • Celiac disease and other symptoms of gluten sensitivity are easily reversed by avoiding gluten.

That's an enormous disease burden coming from a single type of food. I suspect the true incidence may actually be higher, although it's difficult to be sure.

Dangerous Grains
also discusses the opioid-like peptides released from gluten during digestion. Opioids are powerful drugs, such as heroin and morphine, that were originally derived from the poppy seed pod. They are strong suppressors of the immune system and quite addictive. There are no data that conclusively prove the opioid-like peptides in gluten cause immune suppression or addiction to wheat, but there are some interesting coincidences and anecdotes. Celiac patients are at an increased risk of cancer, particularly digestive tract cancer, which suggests that the immune system is compromised. Heroin addicts are also at increased risk of cancer. Furthermore, celiac patients often suffer from abnormal food cravings. 

I know several people who have benefited greatly from removing gluten from their diets. Anyone who has digestive problems, from gas to acid reflux, or any other mysterious health problem, owes it to themselves to try a gluten-free diet for a month. Gluten consumption has increased quite a bit in the U.S. in the last 30 years, mostly due to an increase in the consumption of processed wheat snacks. I believe it's partly to blame for our declining health. Wheat has more gluten than any other grain. Avoiding wheat and all its derivatives is a keystone of my health philosophy.

Another notable change that Sally Fallon and others have pointed out is that today's bread isn't made the same way our grandparents made it. Quick-rise yeast allows bread to be fermented for as little as 3 hours, whereas it was formerly fermented for 8 hours or more. This allowed the gluten to be partially broken down by the microorganisms in the dough.
Some gluten-sensitive people report that they can eat well-fermented sourdough wheat bread without symptoms. I think these ideas are plausible, but they remain anecdotes to me at this point. Until research shows that gluten-sensitive people can do well eating sourdough wheat bread in the long term, I'll be avoiding it. I have no reason to believe I'm gluten sensitive myself, but through my reading I've been convinced that wheat, at least how we eat it today, is probably not healthy for anyone.

I'm not aware of any truly healthy traditional culture that eats wheat as a staple. As a matter of fact, white wheat flour has left a trail of destruction around the globe wherever it has gone. Polished rice does not have such a destructive effect, so it's not simply the fact that it's a refined carbohydrate. Hundreds, if not thousands of cultures throughout the world have lost their robust good health upon abandoning their traditional foods in favor of white flour and sugar. The medical and anthropological literature are peppered with these stories.


Overall, the book is well written and accessible to a broad audience. I recommend it to anyone who has health problems or who is healthy and wants to stay that way!